Определяется и описывается новый тип решеток - решетка кубов. Приводится доказательство того, что число всех субкубов куба размерности т равно 3. Показано, что множество этих субкубов при соответствующем выборе для них операций объединения и пересечения образует решетку, названную решеткой кубов. Предложен алгоритм построения такой решетки, рассматриваются зада-(и минимизации и максимизации супермодулярных функций на ней. Даны конкретные примеры таких функций. Обсуждаются алгоритмы оптимизации и возможности постановки и решения новых классов задач на решетках кубов.