Исследованы решения задачи изотропной теории упругости в напряжениях в трехмерном пространстве без начала координат, имеющие особенность 1/г2, а после домножения на г2 полиномиально зависящие от направляющих косинусов. В этом полиномиальном классе выписано общее решение уравнений равновесия, являющееся статически допустимым (по Кастильяно) решением задачи Кельвина. Показано, что невыполнение одного или определенной группы уравнений Бельтрами приводит к неединственности классического решения Кельвина. Предъявлен путь построения неединственных решений такого рода. Обсуждена эквивалентность различных постановок задачи теории упругости в напряжениях.