В рамках нелинейной энергетической теории устойчивости сжимаемых течений построен энергетический функционал, приводящий к разрешимой вариационной задаче для определения критического числа Рейнольдса ламинарно-турбулентного перехода Recr. Для течения Куэтта сжимаемого газа получены асимптотические оценки устойчивости различных мод, содержащие в главном порядке характерную зависимость Recr?&sqrt;?+4/3 (?= ?b/?). Рассмотренные асимптотики являются длинноволновыми приближениями. Это позволяет заключить, что полученная зависимость описывает воздействие объемной вязкости на крупномасштабные вихревые структуры, характерные для развития неустойчивости Кельвина—Гельмгольца.