Получены интегральные уравнения плоских контактных задач для двухслойного клина (композита) при трех типах граничных условий на одной его грани (отсутствие напряжений, скользящая или жесткая заделка). Композит состоит из двух полностью сцепленных между собой клиньев с разными углами раствора и параметрами упругости. Из символов (трансформант Меллина) ядер интегральных уравнений для двухслойного клина можно вывести символы ядер интегральных уравнений симметричных задач о трещине в трехслойном клине или трехслойной полосе, а также контактных задач для двухслойной полосы (путем специального предельного перехода). Комплексные нули трансформант Меллина определяют асимптотику нормального контактного давления в угловой точке композита при выходе области контакта на эту точку. Важно, что эта асимптотика сохраняется и в трехмерных контактных задачах при выходе штампа на ребро двухслойного клина (вне угловых точек самого штампа). С учетом этой асимптотики найдены решения контактных задач при выходе штампа на вершину композита. Показано, что путем выбора материалов и внутреннего угла двухслойного клина можно избежать осцилляции контактного давления на вершине, которые имеют место для однородного клина и ведут к нарушению контакта. Для композита контактное давление на вершине клина можно сделать нулевым, тогда как для однородного клина того же угла раствора оно неограниченно возрастает. Построены асимптотические решения контактных задач для плоского штампа, расположенного относительно близко к вершине двухслойного клина или относительно далеко от вершины.