Решена задача об определении напряженного состояния вблизи тонкого упругого включения в виде полосы конечной ширины в неограниченном упругом теле (матрице) при прохождении плоских нестационарных волн с учетом усилий со стороны внешней среды. Считается, что матрица находится в состоянии плоской деформации, а на обеих сторонах включения реализованы условия гладкого контакта. Метод решения состоит в применении интегрального преобразования Лапласа по времени и представлении изображений напряжений и перемещений через разрывное решение уравнений Ламе для случая плоской деформации. В результате исходная задача сведена к системе сингулярных интегральных уравнений относительно изображений неизвестных скачков напряжений и перемещений. Для обращения преобразования Лапласа применен численный метод, основанный на замене интеграла Меллина рядом Фурье. В итоге получены приближенные формулы для вычисления коэффициентов интенсивности напряжений (КИН) для включения. С помощью последних исследована временная зависимость КИН, а также влияние на его значения жесткости включения. Также исследовалась возможность рассмотрения включений большой жесткости как абсолютно жестких.