Решается задача минимизации квадратичного функционала в конфигурационном пространстве. Для эффективного увеличения области притяжения глубоких минимумов предлагается матрицу, на которой построен функционал, возводить в степень, и на полученном новом функционале решать задачу минимизации. В работе показано на примере матриц двумерной спинстекольной модели Изинга, что такая техника приводит к сдвигу спектра минимумов в более глубокую область, резко сокращает число находимых мелких минимумов и позволяет с большей, на 3 – 4 порядка, вероятностью находить глобальный минимум.