В статье рассматривается математическая модель динамики малых упругих возмущений в неоднородно деформированном твердом теле, в которой в качестве определяющих параметров локального состояния приняты тензорные характеристики, заданные в актуальной (деформированной) конфигурации - тензор напряжений Коши и меры деформации Генки, Альманзи или Фингера. Для решения сформулированной в рамках модели задачи Коши для системы уравнений гиперболического типа с переменными коэффициентами, описывающей распространение упругих импульсов в неоднородно деформированном континууме, разработан итерационный алгоритм. Для случая двумерных полей напряжений установлены интегральные соотношения акустоупругости, связывающие параметры зондирующего импульса с распределением начальных деформаций (напряжений) вдоль направления его распространения в деформированном теле. Рассматривается пример применения полученных интегральных соотношений в обратной задаче акустической томографии остаточных напряжений в полосе.