Рассматриваются нечеткие модели надежности алгоритмического процесса на основе функций принадлежности, которые зависят от параметров, влияющих на правильность выполнения алгоритма. Формализуются постановки задач оптимизации ресурсов контроля и коррекции линейных алгоритмов по надежностно-стоимостным критериям. Решение поставленных задач иллюстрируется численным примером. Новизна подхода состоит в том, что он не использует статистических данных и оптимизирует параметрическую надежность системы за счет выбора таких ресурсов контроля и коррекции, которые обеспечивают требуемый или максимально возможный уровень правильности функционирования при заданном уровне нестабильности входных параметров.