Проведен анализ уравнений геометрически нелинейной теории упругости при конечных перемещениях и деформациях, составленных с использованием трех вариантов физических соотношений и примененных к решению задачи о растяжении-сжатии прямого бруса. Показано, что использование классических соотношений, связывающих компоненты тензора напряжений с компонентами тензора деформаций Коши-Грина, в задаче о сжатии бруса приводит к появлению "ложной" статической потери устойчивости с сохранением прямолинейности оси, если напряжения отнесены к единицам площадей до деформации тела (условные напряжения), а в задаче о растяжении не позволяет описывать явление статической неустойчивости (образования шейки с появлением пластической неустойчивости). Указанные недостатки в уравнениях отсутствуют при использовании третьего варианта физических соотношений, составленных в виде зависимостей между истинными напряжениями, отнесенными к единице площадей деформированных граней, на которых они действуют, и истинными деформациями удлинений и сдвигов. Соотношения этого варианта являются наиболее корректными, позволяющими перейти к непротиворечивым уравнениям теории упругости и пластичности при малых деформациях и конечных перемещениях, и их следует рекомендовать к практическому применению. В качестве примера такие соотношения составлены для теории течения. Ключевые слова геометрически нелинейная теория упругости, растяжение стержня, статическая неустойчивость, теория течения