Для двумерных уравнений газовой динамики в форме Эйлера построена неявная итерационная разностная схема на основе метода Ньютона. В предложенной схеме исходные уравнения аппроксимируются полностью неявно без использования приближенных методов линеаризации и факторизации. Пространственные производные приближаются явными схемами повышенной точности: TVD, ENO, TVD-ISNAS. Для аппроксимации производных по времени используется переменный шаблон, включающий двух- и трехточечные формулы. Исследованы порядок аппроксимации и устойчивость построенной схемы. Проведено численное исследование, которое показало согласование результатов, полученных по новой неявной схеме, с физическими представлениями о течениях в решетках и с решениями, построенными в CFD решателе F. Ключевые слова: уравнения Эйлера, неявная схема, метод Ньютона, TVD, ENO, TVD-ISNAS, порядок аппроксимации, устойчивость