Рассматриваются задачи обучения нейронных сетей и нейро-фаззи систем, приводящие к сепарабельным моделям - структурам, нелинейным относительно некоторых неизвестных параметров и линейным относительно других неизвестных. Предлагаются новые алгоритмы их обучения, в основе которых - нелинейная оптимизационная задача, включающая априорную информацию только о нелинейно входящих параметрах. Предполагается, что она может быть получена по обучающему множеству, распределению генерирующей выборки или лингвистической информации.