Предложен метод анализа речевых аудиофрагментов и осуществления их хронологического упорядочения. Суть метода заключается в первоначальном представлении аудиофрагментов в виде двухмерных спектрограмм и затем анализа 1025 числовых дескрипторов, полученных как непосредственно из спектрограмм, так и из их преобразований. Значение сходства между двумя аудиофрагментами вычислено с использованием алгоритма K взвешенных ближайших соседей, по результатам работы которого построено дерево сходства для визуализации упорядочения речевых данных. В качестве материалов для эксперимента были взяты аудиофайлы - фрагменты выступлений известных политиков. Экспериментальное исследование подтвердило эффективность применения предлагаемого метода для хронологического упорядочивания аудиофрагментов, что с практической точки зрения открывает новые пути по разработке программных систем для автоматической обработки аудиоархивов и анализа характеристик речи.