Досліджено властивості лінійних задач оптимізації на розміщеннях з імовірнісною невизначеністю, постановку яких здійснено на основі введення лінійного порядку на множині дискретних випадкових величин. Установлено властивості безумовної задачі, у якій коефіцієнти цільової функції або елементи мультимножини (але не те й те одночасно) є дискретними випадковими величинами. Ґрунтуючись на властивостях розв’язку безумовної задачі з детермінованими коефіцієнтами цільової функції, доведено властивості розв’язку для задачі, у якій коефіцієнти цільової функції є випадковими величинами. Запропоновано схему методу гілок і меж для розв’язання лінійних задач оптимізації на розміщеннях з імовірнісною невизначеністю, у якій також запропоновано правила галуження та відсікання множин.