Рассмотрена задача о тепловой конвекции вязкой несжимаемой жидкости в цилиндрической элементарной конвективной ячейке с конически углубленным дном и свободными граничными условиями. В качестве базовых функций использовались аналитические решения стационарной линейной задачи Рэлея в случае свободных граничных условий. Определено пространственное поле распределения скоростей потока в ячейке с коническим дном. Построены функции Стокса в цилиндрической свободной конвективной ячейке с плоскими границами, а также в коническом углублении дна ячейки. Распределения линий тока в ячейках с различными модельными функциями качественно подобны, распределения линий тока в ячейках с различными модельными функциями отличаются максимальной величиной функции Стокса. На основании эффекта Фудзивары получены модельные распределения линий тока Стокса и возмущенной температуры в цилиндрической элементарной конвективной ячейке с конически углубленным дном и свободными граничными условиями Ключевые слова: элементарная конвективная ячейка; свободные границы; конвективные процессы; теплоперенос; температурный градиент