Рассматривается задача оптимизации упаковки гомотетичных одинаково ориентированных эллипсоидов в контейнере минимального объема. Строится математическая модель в виде задачи нелинейного программирования. Ограничения непересечения эллипсоидов и их включения в контейнер построены с использованием метода phi-функций В качестве контейнера рассматривается либо прямоугольный параллелепипед переменной длины, ширины и высоты, либо эллипсоид с переменным коэффициентом гомотетии. Предлагается алгоритм поиска локально оптимальных решений. с использованием гомотетических преобразований эллипсоидов и оптимизационной процедуры, позволяющей свести задачу с большим числом неравенств к последовательности задач с меньшим числом неравенств. Для поиска локальных минимумов задачи используется подход, в основе которого лежит метод мультистарта и оптимизационная процедура, включающая поиск допустимых стартовых точек и локальную оптимизацию. В качестве локально-оптимального решения выбирается наилучший из полученных локальных экстремумов. С целью минимизации числа нелинейных неравенств, формирующих область допустимых решений, предложена процедура LOFRT, которая позволяет значительно сократить вычислительные ресурсы. Приводятся результаты численных экспериментов Ключевые слова: оптимальная упаковка; гомотетичные эллипсоиды; phi-функции; стартове точки; непересечение; включение; нелинейное программирование; итерационная процедура; процедура LOFRT