Исследуются проблемы выбора оптимальной гипотезы в задачах классификации на основе класса гипотез, распределенного относительно апостериорной вероятности. Предложен метод, базирующийся на концепции относительно взвешенного среднего значения и функциях глубины, которые выполняются в пространстве функций классификации. Разработаны алгоритмы для аппроксимации относительной глубины данных и относительного взвешенного среднего значения, обеспечивающие полиномиальные приближения к полупространственным аналогам.