В данной работе для получения устойчивого решения нелинейной обратной граничной задачи теплопроводности применяется метод регуляризации А. Н. Тихонова с эффективным алгоритмом поиска регуляризирующего параметра. Искомый тепловой поток на границе по временной координате аппроксимируем сплайнами Шёнберга первой степени. Для применения метода функций влияния к нелинейной задаче теплопроводности сводим её к последовательности линейных обратных граничных задач, используя итерационный процесс. Данный итерационный процесс заканчивается при достижении наперёд заданной точности для восстановленной температуры. В статье представлено обоснование использования функций влияния для аппроксимации решения линейной краевой задачи теплопроводности. В частности, показано, что функции влияния линейно независимы на временном интервале (0, ?) при фиксированной пространственной переменной. Этот факт используется для идентификации температуры на границе или внутри области. Проведены многочисленные вычислительные эксперименты с использованием стабилизирующих функционалов нулевого и первого порядка, а также анализ влияния величины дисперсии случайной погрешности измерения на погрешность получаемого решения. В результате вычислительного эксперимента выяснилось, что для данного класса задач регуляризация первого порядка оказалась более эффективной, чем регуляризация нулевого порядка. Также результаты вычислительного эксперимента свидетельствуют, что при увеличении количества точек, в которых задана экспериментальная температура, точность идентификации возрастает. Ключевые слова: обратная граничная задача теплопроводности; метод взвешенных невязок в форме Галёркина; тепловой поток; принцип суперпозиции; метод регуляризации А. Н. Тихонова; функционал; стабилизатор; параметр регуляризации; идентификация; аппроксимация; сплайн Шёнбер