Зведений каталог бібліотек Харкова

 

Yang, L.
    Unsupervised Segmentation Based on Robust Estimation and Color Active Contour Models [Електронний ресурс] [Текст] / L. Yang, P. Meer, D.J. Foran // IEEE Transactions on Information Technology in Biomedicine . — USA, 2005. — 3. — Pp. 475-486.


- Ключові слова:

сегментація зображень, сегментация изображений, image segmentation

- Анотація:

One of the most commonly used clinical tests performed today is the routine evaluation of peripheral blood smears. In this paper, we investigate the design, development, and implementation of a robust color gradient vector flow (GVF) active contour model for performing segmentation, using a database of 1791 imaged cells. The algorithms developed for this research operate in Luv color space, and introduce a color gradient and 2 robust estimation into the traditional GVF snake. The accuracy of the new model was compared with the segmentation results using a mean-shift approach, the traditional color GVF snake, and several other commonly used segmentation strategies. The unsupervised robust color snake with 2 robust estimation was shown to provide results which were superior to the other unsupervised approaches, and was comparable with supervised segmentation, as judged by a panel of human experts.

- Електронні версії документа:

- Є складовою частиною документа:

Наявність
Установа Кількість Документ на сайті установи
Наукова бібліотека Харківського національного університету радіоелектроніки   Перейти на сайт