Зведений каталог бібліотек Києва

 

МіненкорМіненко, Р.
    Сучасний стан проблеми стійких розв"язків обернених лінійних задач гравіметрії [Текст] / Р. Міненко, П. Міненко, Ю. Мечніков // Вісник Київського національного університету імені Тараса Шевченка. — Київ : ВПЦ "Київський університет", 2006. — 2006. — C. 86-93.


- Ключові слова:

геологічна інформатика, геологическая информатика ; гравіметрія, гравиметрия

- Анотація:

Мета роботи полягає у встановленні причин безпідставної зміни щільності у розв"язку ОЛЗГ, перевірці їх на теоретичних прикладах та створенні методу розв'язку оберненої лінійної задачі гравіметрії (ОЛЗГ) з реальним відтворенням розподілу щільності в аномальному тілі вздовж його вертикальної осі.

Обернені задачі гравіметрії й магнітометрії сильно некоректні, зокрема, тому, що різні критерії оптимізації дають різні рішення і вони можуть бути істотно різними в деяких областях інтерпретаційної моделі. А при перевірці стійкості розв"язків часто виявляється невідповідність: при малих похибках поля в багатьох точках отримують великі зміни щільності у блоках, розташованих під цими точками. Вагомих успіхів було досягнуто після того, як: 1) акад. В.Н. Страхов висунув умову: стійкий та геологічно змістовний розв"язок ОЛЗГ може бути отриманий тільки методами умовної оптимізації. Крім того, для розв"язку ОЛЗГ він розробив ітераційний метод найменших квадратів нев"язок поля; 2) акад. В.І. Старостенко розробив ітераційну поправку для розв"язків СЛАР; 3) П.О. Міненко довів теорему: для стійкого розв"язку ОЛЗГ необхідною умовою є рівність площ карти поля та проекції інтерпретаційної моделі на карту поля. Ця теорема відповідає вимогам В.Н. Страхова. Її П.О. Міненко використав для розв"язку ОЛЗГ ітераційним методом найменших квадратів В.Н. Страхова для нев"язок поля та розробив фільтраційний ітераційний метод простої ітерації з поправкою В.І. Старостенка, оптимізуючи мінімум суми квадратів ітераційних поправок до щільності гірських порід. У результаті було створено оптимізований ітераційний метод гарантованого стійкого розв"язку ОЛЗГ для багатошарової інтерпретаційної моделі, у якій кожен горизонтальний шар щільно упакований блоками, що мають форму прямокутного паралелепіпеда та різну й невідому щільність. Але цей метод абсолютно не гарантує геологічної чи фізичної відповідності отриманих розв"язком ОЛЗГ значень щільності кожного блоку моделі реальним значенням щільності масивів гірських порід. Р.В. Міненко розробив двоетапну методику отримання стійкого та змістовного розв"язку ОЛЗГ. За додатковим рішенням з уточнюючими ітераційними поправками після вирівнювання початкових умов ітераційного процесу на другому етапі у всіх шарах моделі ми отримуємо розподіл щільності, який збігається з її розподілом в аномальних тілах теоретичної моделі. Це означає, що основною причиною зменшення щільності у розв'язку ОЛЗГ з глибиною на першому етапі є відсутність управління розподілом нев'язки поля на кожній ітерації в кожній точці при перетворенні її в ітераційні поправки для всіх блоків моделі, які знаходяться під точкою поля.

The paper aims at determining the causes of the change in density for ILPG unjustified solutions, providing a theoretical proof, and building a method for solving a real ILPG reproduction of the density distribution in the anomalous body along its vertical axis. Inverse problems in gravimentry and magnetometry are clearly and technically incorrect, for various optimization criteria give different solutions, and they can be substantially different in some areas of the interpretation model. Besides, when stability of solutions is checked, there is often revealed a mismatch: small errors in the field in many places cause large changes in density in the blocks located under these points.

The paper gives coverage of scientific findings that contribute to inverse linear problems. Namely, Acad. Strakhov postulates stable and geologically meaningful ILPG solution will only be obtained through methods of constrained optimization, and develops an iterative method of least squares of the residuals. Acad. Starostenko develops iterative correction for solving linear algebraic equation. Doc. Minenko proves a theorem stating equality area map projection field and interpretation model to map the fields makes a prerequisite for ILPG sustainable solutions. Acad. Strakhov's iterative method of least squares for residual field is further used by Doc. Minenko to develop a filtering iterative method of simple iteration adjusted by Acad. Starostenko through optimizing iterative least sums of the squares of corrections to the density of rocks.

The finding is a guaranteed method of iterative optimized sustainable solutions for ILPG multilayer interpretation model, in which each horizontal layer is densely packed by cuboid-shaped blocks of different unknown density. Still, the main drawback of the method is it does not ensure absolute geological or physical equivalency between ILPG density values of each block model and real values of rock massif density. Doc. Minenko develops a two-step procedure for finding ILPG sustainable and meaningful solutions.

Further solutions being achieved (meaning iterative refinement of the problem being made following the equalizing of the initial conditions of the iterative process in the second stage in all layers of the model), we obtain the density distribution, which coincides with one in anomalous bodies of the theoretical model. This means that the main reason for the density reduction in the ILPG solution with depth in the first stage is lack of control over the residual distribution field at each iteration and point during their conversion into iterative corrections for all blocks of the models below the pitch dot.

Цель работы заключается в установлении причин безосновательного изменения плотности в решении ОЛЗГ, проверке их на теоретических примерах и создании метода решения ОЛЗГ с реальным воспроизведением распределения плотности в аномальном телевдоль его вертикальной оси.

Обратные задачи гравиметрии и магнитометрии сильно некорректны, в частности, потому, что различные критерии оптимизации дают различные решения и они могут быть существенно различными в некоторых областях интерпретационной модели. А при проверке устойчивости решений часто выявляется несоответствие: при малых погрешностях поля во многих точках получают большие изменения плотности в блоках, расположенных под этими точками. Весомые успехи были достигнуты после того, как: 1) акад. В.Н. Страхов выставил условие: устойчивое и геологически содержательное решение ОЛЗГ может быть получено только методами условной оптимизации. Кроме того, для решения ОЛЗГ он разработал итерационный метод наименьших квадратов невязок поля; 2) акад. В.И. Старостенко разработал итерационную поправку для решения СЛАУ; 3) П.А. Миненко доказал теорему: для устойчивого решения ОЛЗГ необходимым условием является равенство площадей карты поля и проекции интерпретационной модели на карту поля. Эта теорема удовлетворяет условию В.Н. Страхова. Её П.А. Миненко использовал для решения ОЛЗГ итерационным методом наименьших квадратов В.Н. Страхова для невязок поля и разработал фильтрационный итерационный метод простой итерации с поправкой В.И. Старостенко, оптимизируя минимум суммы квадратов итерационных поправок к плотности горных пород. В результате был создан оптимизированный итерационный метод гарантированного устойчивого решения ОЛЗГ для многослойной интерпретационной модели, в которой каждый горизонтальный слой плотно упакован блоками, имеющими форму прямоугольного параллелепипеда и разную неизвестную плотность. Но этот метод абсолютно не гарантирует геологическое или физическое соответствие полученных решением ОЛЗГ значений плотности каждого блока модели реальным значениям плотности массивов горных пород. Р.В. Миненко разработал двухэтапную методику получения устойчивого и содержательного решения ОЛЗГ. По дополнительному решению с уточняющими итерационными поправками после выравнивания начальных условий итерационного процесса на втором этапе во всех слоях модели мы получаем распределение плотности, которое совпадает с ее распределением в аномальных телах теоретической модели. Это означает, что основной причиной уменьшения плотности в решении ОЛЗГ с глубиной на первом этапе является отсутствие управления распределением невязки поля на каждой итерации в каждой точке при преобразовании ее в итерационные поправки для всех блоков модели, которые находятся под точкой поля.

- Є складовою частиною документа:

- Теми документа

  • Окремі фонди та колекції КНУ // праці авторів КНУТШ, труды авторов КНУТШ, работы авторов КНУТШ



Наявність
Установа Кількість Документ на сайті установи
Наукова бібліотека ім.М.Максимовича Київського національного університету імені Тараса Шевченка   Перейти на сайт