В монографии приводятся методы определения коэффициентов дифференциальных уравнений по данным рассеяния, теоремы существования и единственности решения обратной задачи рассеяния, а также эффективная процедура ее решения. Подробно рассмотрены системы гиперболических уравнений первого порядка, волновые уравнения, уравнения переноса, уравнения в частных разностях и др.
Излагается интегрирование многомерных нелинейных эволюционных уравнений методом обратной задачи рассеяния. Даны точные (солитонные) решения и качественный анализ задачи Коши.
Для математиков, физиков, а также аспирантов и студентов соответствующих специальностей.