Монография посвящена характеризационным задачам математической статистики . Рассмотрены обощения некоторых хорошо известных характеризационных теорем в предложении, когда независимые случайные величины принимают значения в локально компактной абелевой группе. Особое внимание уделено характеризации гауссовского и идемпотентного распределений (групповые аналоги теорем Каца-Бернштейна, Скитовича-Дармуа и Хейде). Также изучаются групповые аналоги теорем Крамера и Марцинкевича.
Для математиков, специалистов в области теории вероятностей на алгебраических структурах, абстрактного гармонического анализа и функциональных уравнений. Книга может быть полезна аспирантам и студентам старших курсов.